32 research outputs found

    Effects of Climate and Atmospheric Nitrogen Deposition on Early to Mid-Term Stage Litter Decomposition Across Biomes

    Get PDF
    open263siWe acknowledge support by the German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, funded by the German Research Foundation (FZT 118), Scientific Grant Agency VEGA(GrantNo.2/0101/18), as well as by the European Research Council under the European Union’s Horizon 2020 Research and Innovation Program (Grant Agreement No. 677232)Litter decomposition is a key process for carbon and nutrient cycling in terrestrial ecosystems and is mainly controlled by environmental conditions, substrate quantity and quality as well as microbial community abundance and composition. In particular, the effects of climate and atmospheric nitrogen (N) deposition on litter decomposition and its temporal dynamics are of significant importance, since their effects might change over the course of the decomposition process. Within the TeaComposition initiative, we incubated Green and Rooibos teas at 524 sites across nine biomes. We assessed how macroclimate and atmospheric inorganic N deposition under current and predicted scenarios (RCP 2.6, RCP 8.5) might affect litter mass loss measured after 3 and 12 months. Our study shows that the early to mid-term mass loss at the global scale was affected predominantly by litter quality (explaining 73% and 62% of the total variance after 3 and 12 months, respectively) followed by climate and N deposition. The effects of climate were not litter-specific and became increasingly significant as decomposition progressed, with MAP explaining 2% and MAT 4% of the variation after 12 months of incubation. The effect of N deposition was litter-specific, and significant only for 12-month decomposition of Rooibos tea at the global scale. However, in the temperate biome where atmospheric N deposition rates are relatively high, the 12-month mass loss of Green and Rooibos teas decreased significantly with increasing N deposition, explaining 9.5% and 1.1% of the variance, respectively. The expected changes in macroclimate and N deposition at the global scale by the end of this century are estimated to increase the 12-month mass loss of easily decomposable litter by 1.1-3.5% and of the more stable substrates by 3.8-10.6%, relative to current mass loss. In contrast, expected changes in atmospheric N deposition will decrease the mid-term mass loss of high-quality litter by 1.4-2.2% and that of low-quality litter by 0.9-1.5% in the temperate biome. Our results suggest that projected increases in N deposition may have the capacity to dampen the climate-driven increases in litter decomposition depending on the biome and decomposition stage of substrate.openKwon T.; Shibata H.; Kepfer-Rojas S.; Schmidt I.K.; Larsen K.S.; Beier C.; Berg B.; Verheyen K.; Lamarque J.-F.; Hagedorn F.; Eisenhauer N.; Djukic I.; Caliman A.; Paquette A.; Gutierrez-Giron A.; Petraglia A.; Augustaitis A.; Saillard A.; Ruiz-Fernandez A.C.; Sousa A.I.; Lillebo A.I.; Da Rocha Gripp A.; Lamprecht A.; Bohner A.; Francez A.-J.; Malyshev A.; Andric A.; Stanisci A.; Zolles A.; Avila A.; Virkkala A.-M.; Probst A.; Ouin A.; Khuroo A.A.; Verstraeten A.; Stefanski A.; Gaxiola A.; Muys B.; Gozalo B.; Ahrends B.; Yang B.; Erschbamer B.; Rodriguez Ortiz C.E.; Christiansen C.T.; Meredieu C.; Mony C.; Nock C.; Wang C.-P.; Baum C.; Rixen C.; Delire C.; Piscart C.; Andrews C.; Rebmann C.; Branquinho C.; Jan D.; Wundram D.; Vujanovic D.; Adair E.C.; Ordonez-Regil E.; Crawford E.R.; Tropina E.F.; Hornung E.; Groner E.; Lucot E.; Gacia E.; Levesque E.; Benedito E.; Davydov E.A.; Bolzan F.P.; Maestre F.T.; Maunoury-Danger F.; Kitz F.; Hofhansl F.; Hofhansl G.; De Almeida Lobo F.; Souza F.L.; Zehetner F.; Koffi F.K.; Wohlfahrt G.; Certini G.; Pinha G.D.; Gonzlez G.; Canut G.; Pauli H.; Bahamonde H.A.; Feldhaar H.; Jger H.; Serrano H.C.; Verheyden H.; Bruelheide H.; Meesenburg H.; Jungkunst H.; Jactel H.; Kurokawa H.; Yesilonis I.; Melece I.; Van Halder I.; Quiros I.G.; Fekete I.; Ostonen I.; Borovsk J.; Roales J.; Shoqeir J.H.; Jean-Christophe Lata J.; Probst J.-L.; Vijayanathan J.; Dolezal J.; Sanchez-Cabeza J.-A.; Merlet J.; Loehr J.; Von Oppen J.; Loffler J.; Benito Alonso J.L.; Cardoso-Mohedano J.-G.; Penuelas J.; Morina J.C.; Quinde J.D.; Jimnez J.J.; Alatalo J.M.; Seeber J.; Kemppinen J.; Stadler J.; Kriiska K.; Van Den Meersche K.; Fukuzawa K.; Szlavecz K.; Juhos K.; Gerhtov K.; Lajtha K.; Jennings K.; Jennings J.; Ecology P.; Hoshizaki K.; Green K.; Steinbauer K.; Pazianoto L.; Dienstbach L.; Yahdjian L.; Williams L.J.; Brigham L.; Hanna L.; Hanna H.; Rustad L.; Morillas L.; Silva Carneiro L.; Di Martino L.; Villar L.; Fernandes Tavares L.A.; Morley M.; Winkler M.; Lebouvier M.; Tomaselli M.; Schaub M.; Glushkova M.; Torres M.G.A.; De Graaff M.-A.; Pons M.-N.; Bauters M.; Mazn M.; Frenzel M.; Wagner M.; Didion M.; Hamid M.; Lopes M.; Apple M.; Weih M.; Mojses M.; Gualmini M.; Vadeboncoeur M.; Bierbaumer M.; Danger M.; Scherer-Lorenzen M.; Ruek M.; Isabellon M.; Di Musciano M.; Carbognani M.; Zhiyanski M.; Puca M.; Barna M.; Ataka M.; Luoto M.; H. Alsafaran M.; Barsoum N.; Tokuchi N.; Korboulewsky N.; Lecomte N.; Filippova N.; Hlzel N.; Ferlian O.; Romero O.; Pinto-Jr O.; Peri P.; Dan Turtureanu P.; Haase P.; Macreadie P.; Reich P.B.; Petk P.; Choler P.; Marmonier P.; Ponette Q.; Dettogni Guariento R.; Canessa R.; Kiese R.; Hewitt R.; Weigel R.; Kanka R.; Cazzolla Gatti R.; Martins R.L.; Ogaya R.; Georges R.; Gaviln R.G.; Wittlinger S.; Puijalon S.; Suzuki S.; Martin S.; Anja S.; Gogo S.; Schueler S.; Drollinger S.; Mereu S.; Wipf S.; Trevathan-Tackett S.; Stoll S.; Lfgren S.; Trogisch S.; Seitz S.; Glatzel S.; Venn S.; Dousset S.; Mori T.; Sato T.; Hishi T.; Nakaji T.; Jean-Paul T.; Camboulive T.; Spiegelberger T.; Scholten T.; Mozdzer T.J.; Kleinebecker T.; Runk T.; Ramaswiela T.; Hiura T.; Enoki T.; Ursu T.-M.; Di Cella U.M.; Hamer U.; Klaus V.; Di Cecco V.; Rego V.; Fontana V.; Piscov V.; Bretagnolle V.; Maire V.; Farjalla V.; Pascal V.; Zhou W.; Luo W.; Parker W.; Parker P.; Kominam Y.; Kotrocz Z.; Utsumi Y.Kwon T.; Shibata H.; Kepfer-Rojas S.; Schmidt I.K.; Larsen K.S.; Beier C.; Berg B.; Verheyen K.; Lamarque J.-F.; Hagedorn F.; Eisenhauer N.; Djukic I.; Caliman A.; Paquette A.; Gutierrez-Giron A.; Petraglia A.; Augustaitis A.; Saillard A.; Ruiz-Fernandez A.C.; Sousa A.I.; Lillebo A.I.; Da Rocha Gripp A.; Lamprecht A.; Bohner A.; Francez A.-J.; Malyshev A.; Andric A.; Stanisci A.; Zolles A.; Avila A.; Virkkala A.-M.; Probst A.; Ouin A.; Khuroo A.A.; Verstraeten A.; Stefanski A.; Gaxiola A.; Muys B.; Gozalo B.; Ahrends B.; Yang B.; Erschbamer B.; Rodriguez Ortiz C.E.; Christiansen C.T.; Meredieu C.; Mony C.; Nock C.; Wang C.-P.; Baum C.; Rixen C.; Delire C.; Piscart C.; Andrews C.; Rebmann C.; Branquinho C.; Jan D.; Wundram D.; Vujanovic D.; Adair E.C.; Ordonez-Regil E.; Crawford E.R.; Tropina E.F.; Hornung E.; Groner E.; Lucot E.; Gacia E.; Levesque E.; Benedito E.; Davydov E.A.; Bolzan F.P.; Maestre F.T.; Maunoury-Danger F.; Kitz F.; Hofhansl F.; Hofhansl G.; De Almeida Lobo F.; Souza F.L.; Zehetner F.; Koffi F.K.; Wohlfahrt G.; Certini G.; Pinha G.D.; Gonzlez G.; Canut G.; Pauli H.; Bahamonde H.A.; Feldhaar H.; Jger H.; Serrano H.C.; Verheyden H.; Bruelheide H.; Meesenburg H.; Jungkunst H.; Jactel H.; Kurokawa H.; Yesilonis I.; Melece I.; Van Halder I.; Quiros I.G.; Fekete I.; Ostonen I.; Borovsk J.; Roales J.; Shoqeir J.H.; Jean-Christophe Lata J.; Probst J.-L.; Vijayanathan J.; Dolezal J.; Sanchez-Cabeza J.-A.; Merlet J.; Loehr J.; Von Oppen J.; Loffler J.; Benito Alonso J.L.; Cardoso-Mohedano J.-G.; Penuelas J.; Morina J.C.; Quinde J.D.; Jimnez J.J.; Alatalo J.M.; Seeber J.; Kemppinen J.; Stadler J.; Kriiska K.; Van Den Meersche K.; Fukuzawa K.; Szlavecz K.; Juhos K.; Gerhtov K.; Lajtha K.; Jennings K.; Jennings J.; Ecology P.; Hoshizaki K.; Green K.; Steinbauer K.; Pazianoto L.; Dienstbach L.; Yahdjian L.; Williams L.J.; Brigham L.; Hanna L.; Hanna H.; Rustad L.; Morillas L.; Silva Carneiro L.; Di Martino L.; Villar L.; Fernandes Tavares L.A.; Morley M.; Winkler M.; Lebouvier M.; Tomaselli M.; Schaub M.; Glushkova M.; Torres M.G.A.; De Graaff M.-A.; Pons M.-N.; Bauters M.; Mazn M.; Frenzel M.; Wagner M.; Didion M.; Hamid M.; Lopes M.; Apple M.; Weih M.; Mojses M.; Gualmini M.; Vadeboncoeur M.; Bierbaumer M.; Danger M.; Scherer-Lorenzen M.; Ruek M.; Isabellon M.; Di Musciano M.; Carbognani M.; Zhiyanski M.; Puca M.; Barna M.; Ataka M.; Luoto M.; H. Alsafaran M.; Barsoum N.; Tokuchi N.; Korboulewsky N.; Lecomte N.; Filippova N.; Hlzel N.; Ferlian O.; Romero O.; Pinto-Jr O.; Peri P.; Dan Turtureanu P.; Haase P.; Macreadie P.; Reich P.B.; Petk P.; Choler P.; Marmonier P.; Ponette Q.; Dettogni Guariento R.; Canessa R.; Kiese R.; Hewitt R.; Weigel R.; Kanka R.; Cazzolla Gatti R.; Martins R.L.; Ogaya R.; Georges R.; Gaviln R.G.; Wittlinger S.; Puijalon S.; Suzuki S.; Martin S.; Anja S.; Gogo S.; Schueler S.; Drollinger S.; Mereu S.; Wipf S.; Trevathan-Tackett S.; Stoll S.; Lfgren S.; Trogisch S.; Seitz S.; Glatzel S.; Venn S.; Dousset S.; Mori T.; Sato T.; Hishi T.; Nakaji T.; Jean-Paul T.; Camboulive T.; Spiegelberger T.; Scholten T.; Mozdzer T.J.; Kleinebecker T.; Runk T.; Ramaswiela T.; Hiura T.; Enoki T.; Ursu T.-M.; Di Cella U.M.; Hamer U.; Klaus V.; Di Cecco V.; Rego V.; Fontana V.; Piscov V.; Bretagnolle V.; Maire V.; Farjalla V.; Pascal V.; Zhou W.; Luo W.; Parker W.; Parker P.; Kominam Y.; Kotrocz Z.; Utsumi Y

    Effects of climate and atmospheric nitrogen deposition on early to mid-term stage litter decomposition across biomes

    Get PDF
    Litter decomposition is a key process for carbon and nutrient cycling in terrestrial ecosystems and is mainly controlled by environmental conditions, substrate quantity and quality as well as microbial community abundance and composition. In particular, the effects of climate and atmospheric nitrogen (N) deposition on litter decomposition and its temporal dynamics are of significant importance, since their effects might change over the course of the decomposition process. Within the TeaComposition initiative, we incubated Green and Rooibos teas at 524 sites across nine biomes. We assessed how macroclimate and atmospheric inorganic N deposition under current and predicted scenarios (RCP 2.6, RCP 8.5) might affect litter mass loss measured after 3 and 12 months. Our study shows that the early to mid-term mass loss at the global scale was affected predominantly by litter quality (explaining 73% and 62% of the total variance after 3 and 12 months, respectively) followed by climate and N deposition. The effects of climate were not litter-specific and became increasingly significant as decomposition progressed, with MAP explaining 2% and MAT 4% of the variation after 12 months of incubation. The effect of N deposition was litter-specific, and significant only for 12-month decomposition of Rooibos tea at the global scale. However, in the temperate biome where atmospheric N deposition rates are relatively high, the 12-month mass loss of Green and Rooibos teas decreased significantly with increasing N deposition, explaining 9.5% and 1.1% of the variance, respectively. The expected changes in macroclimate and N deposition at the global scale by the end of this century are estimated to increase the 12-month mass loss of easily decomposable litter by 1.1-3.5% and of the more stable substrates by 3.8-10.6%, relative to current mass loss. In contrast, expected changes in atmospheric N deposition will decrease the mid-term mass loss of high-quality litter by 1.4-2.2% and that of low-quality litter by 0.9-1.5% in the temperate biome. Our results suggest that projected increases in N deposition may have the capacity to dampen the climate-driven increases in litter decomposition depending on the biome and decomposition stage of substrate. © Copyright © 2021 Kwon, Shibata, Kepfer-Rojas, Schmidt, Larsen, Beier, Berg, Verheyen, Lamarque, Hagedorn, Eisenhauer, Djukic and TeaComposition Network

    Cs-137 contamination in forest ecosystems in southwest Rila Mountain, Bulgaria

    No full text
    International audienceWe studied Cs-137 contamination and radionuclide transfer in mountain forest ecosystems from Bulgaria. Here we show the first analyses of Cs-137 soil-to-plant transfer and we assess that it depends on the soil organic matter content and the specifics of the tree species. The forest litter is strong polluted with Cs-137 and is a barrier for its migration. In the upper 0-5 cm of the soil the Cs content ranges from 52 to 81 Bq kg–1 then decreases in deeper layers. The 1-year-old needles of spruce, fir, and Scots pine accumulate more cesium than the fine roots. The values of the needles transfer factor range between 0.3 and 0.58. The fine roots transfer factor varies between 0.1 and 0.32

    Carbon storage and soil property changes following afforestation in mountain ecosystems of the Western Rhodopes, Bulgaria

    No full text
    Land-use changes and afforestation activities are widely recognized as possible measures for mitigating climate change through carbon sequestration. The present study was conducted to evaluate the effect of afforestation on (i) soil physical and chemical properties and soil carbon stocks in four mountain ecosystems and (ii) whole ecosystem carbon storage. The four experimental sites, situated in the Western Rhodope Mountains (Bulgaria) were characterized by typical forest-related land-use conversions. The four sites were a Douglas fir (Pseudotsuga menziesii [Mirb.] Franco) plantation (Rd1) established on former cropland, a mixed black pine (Pinus nigra Arn.) with Scots pine (Pinus sylvestris L.) plantation (Rd2) established on former cropland, a cropland (RdA1) and an abandoned land with uncontrolled extensive grazing (RdA2) historically used as cropland. Soil parameters, i.e., sand content, pH, organic C and N contents, C/N ratio and soil organic carbon (SOC) stocks, were significantly affected by land use and land-use history. Conversion from cropland into forestland significantly reduced soil bulk density and coarse fragments at 0-10 cm depth. Compared with adjacent cropland and abandoned land, soils in coniferous plantations were acidified in their upper layers. Sites Rd2 and RdA2 contained the least SOC owing to the previous long-term arable cultivation (>100 years). Analysis of the ecosystem C stock distribution revealed that most of C in forests was stored in the aboveground tree biomass. Our study confirmed that afforestation of cropland turned the soil into a C sink for the selected mountain region, but showed conflicting results when afforestation occurred on abandoned cropland

    Soil properties as indicators of treeline dynamics in relation to anthropogenic pressure and climate change

    Get PDF
    Mountain forests, treeline ecotones included, provide numerous ecosystem services. However, different drivers heavily impact the treeline areas, in particular anthropogenic pressure and climate change. Any change affecting the aboveground portion of terrestrial ecosystems auto- matically influences their belowground part, i.e. soil and soil organisms. Therefore, the focus of the present paper is on the soil resource that provides multiple ecosystem services, such as carbon storage, water filtration, food and biomass provisioning, biodiversity, maintenance, etc. Soil phys- ical, chemical, and biological properties can be very helpful as indicators of ecosystem services in mountain regions. A selection and integration of appropriate indicators of soil quality is thus needed for soil monitoring and assessment in treeline areas. In this paper, results of case studies from mountain regions in Bulgaria, the Czech Republic, Italy, Romania, and Slovakia are pre- sented. From these studies, it emerges that soil organic matter (content and quality), pH, and microbial parameters show significant changes in response to anthropogenic pressures and/or cli- mate change. These indicators of soil quality, either in the short- or in the long-term, can thus be used as reliable and sensitive tools for monitoring actions. However, it is advisable to integrate this basic set with additional indicators that can be further selected in relation to specific conditions, such as geographical area, lithological substrate, land use, and management practice

    LinkPAs – Linking networks of protected areas to territorial development, Inception Report Version 30/08/2017

    No full text
    The overall objective of the Linking networks of protected areas to territorial development - LinkPAs project - is to explore the role of existing networks of protected areas (NPAs) to define and implement sustainable territorial development strategies and policies. This study was launched by ESPON upon the stakeholders’ request and it seeks to identify emerging trends in governance practices within complex socio-ecological systems (i.e. mountain regions) that are likely to shape a novel approach to natural resource management. Drawing on the activities carried out by existing NPAs, this project seeks to provide significant evidence of the impact that NPAs have on growth at different territorial levels of development. Consequently, the project shall offer recommendations to ensure the successful capitalisation of the natural resources management; it is furthermore suggested that these recommendations should be integrated to the framework of general and sectoral strategies. LinkPAs investigates four Protected Areas (PAs) that have joined different NPAs according to their specific territorial characteristics (e.g. PAs typologies, biodiversity, cultural heritage, etc.), institutional structure (e.g. legal status), geographical specificity and diversity (e.g. mountain with low accessibility, the population, poor services of general interest) and geographical location (within the scope of application of an international treaty). In order to raise awareness regarding PAs and NPAs among prospective stakeholders, the University of Rome Tor Vergata (project leader) has created a consortium comprising five more partners and started a close cooperation with the Stakeholders Steering Committee (Abruzzo Region, the EGTC European Park Alpi Marittime-Mercantour, the ALPARC territory, the Municipality of Razlog) As prescribed in the Terms of Reference (ToR), this Inception Report (IR) provides a description of the conceptual and methodological framework used to carry out this project, an overview of qualitative data to be collected and the relevant literature to be used throughout. It also outlines a preliminary overview of existing models of NPA and their governance and regulations within territorial development. This report concludes by discussing a preliminary set of policy recommendations
    corecore